Carbon balance of the taiga forest within Alaska: present and future
نویسندگان
چکیده
Forest biomass, rates of production, and carbon dynamics are a function of climate, plant species present, and the structure of the soil organic and mineral layers. Inventory data from the U.S. Forest Service (USFS) Inventory Analysis Unit was used to develop estimates of the land area represented by the major overstory species at various age-classes. The CENTURY model was then used to develop an estimate of carbon dynamics throughout the age sequence of forest development for the major ecosystem types. The estimated boreal forest area in Alaska, based on USFS inventory data is 17 244 098 ha. The total aboveground biomass within the Alaska boreal forest was estimated to be 815 330 000 Mg. The CENTURY model estimated maximum net ecosystem production (NEP) at 137, 88, 152, 99, and 65 g·m–2·year–1 for quaking aspen (Populus tremuloides Michx.), paper birch (Betula papyrifera Marsh.), balsam poplar (Populus balsamifera L.), white spruce (Picea glauca (Moench) Voss), and black spruce (Picea mariana (Mill.) BSP) forest stands, respectively. These values were predicted at stand ages of 80, 60, 41, 68, and 100 years, respectively. The minimum values of NEP for aspen, paper birch, balsam poplar, white spruce, and black spruce were –171, –166, –240, −300, and –61 g·m–2·year–1 at the ages of 1, 1, 1, 1, and 12, respectively. NEP became positive at the ages of 14, 19, 16, 13, and 34 for aspen, birch, balsam poplar, white spruce, and black spruce ecosystems, respectively. A 5°C increase in mean annual temperature resulted in a higher amount of predicted production and decomposition in all ecosystems, resulting in an increase of NEP. We estimate that the current vegetation absorbs approximately 9.65 Tg of carbon per year within the boreal forest of the state. If there is a 5°C increase in the mean annual temperature with no change in precipitation we estimated that NEP for the boreal forest in Alaska would increase to 16.95 Tg of carbon
منابع مشابه
Ecosystem carbon emissions from 2015 forest fires in interior Alaska
BACKGROUND In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town ...
متن کاملSimulating Changes in Fires and Ecology of the 21st Century Eurasian Boreal Forests of Siberia
Wildfires release the greatest amount of carbon into the atmosphere compared to other forest disturbances. To understand how current and potential future fire regimes may affect the role of the Eurasian boreal forest in the global carbon cycle, we employed a new, spatially-explicit fire module DISTURB-F (DISTURBance-Fire) in tandem with a spatially-explicit, individually-based gap dynamics mode...
متن کاملCarbon Balance Implications of Forest Biomass Production Potential
Forests in boreal and temperate forest-ecosystems have importance for carbon balance since they sequester large amount of atmospheric carbon by uptake of carbon-dioxide during photosynthesis, and transfer and store carbon in the forest ecosystem. Forest material can be used for bio-fuel purposes and substitute fossil fuels, and supply wood products, which can replace carbon-and-energy-intensive...
متن کاملComparison of Three AVHRR-Based Fire Detection Algorithms for Interior Alaska
Three satellite fire detection models (threshold, contexburned over 2.7 million ha within Alaska (Table 1). Most of the area burned in Alaska is from wildfires caused by tual, and fuel mask) were compared and evaluated using lightning in remote regions. Because of the remoteness National Oceanographic and Atmospheric Administraand large area of Alaska, a timely and cost-effective tion (NOAA)-11...
متن کاملShort and long-term carbon balance of bioenergy electricity production fueled by forest treatments
BACKGROUND Forests store large amounts of carbon in forest biomass, and this carbon can be released to the atmosphere following forest disturbance or management. In the western US, forest fuel reduction treatments designed to reduce the risk of high severity wildfire can change forest carbon balance by removing carbon in the form of biomass, and by altering future potential wildfire behavior in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002